Title | Author | Year | SCOPUS | PUBMED | ISI | TCI | |
---|---|---|---|---|---|---|---|
1. | On the Diophantine equation 2(x)+11(y) = z(2) | Somchit Chotchaisthit | 2013 | ||||
2. | On the diophantine equation p x + (p + 1)y = z 2 where p is a mersenne prime | Chotchaisthit, S. | 2013 | ||||
3. | Simple proofs determining all nonisomorphic semigroups of order 3 with two idempotents | Chotchaisthit, S. | 2013 | ||||
4. | Common fixed point theorems for a Ćirić-Reich-Rus pair of mappings in metric spaces with a directed graph | Boonsri, N. Chotchaisthit, S. Saejung, S. |
2014 | ||||
5. | On the Diophantine equation (2k −1)x + (2k)y = z2 when k is a positive integer | Chotchaisthit, S. | 2014 | ||||
6. | On the diophantine equation 3x + 32sny = z2t where n, s, t are non-negative integers and n = 5 (mod 20) | Sarasit, N. Chotchaisthit, S. |
2014 | ||||
7. | On the Diophantine equations px + py = z2m where p is prime and m is a non-negative integer | Chotchaisthit, S. | 2014 | ||||
8. | Simple proofs determining all nonisomorphic semigroups of order 3 | Chotchaisthit, S. | 2014 | ||||
9. | On the diophantine equation 143x + 1432s ny = z2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) | Chotchaisthit, S. Worawiset, S. |
2015 | ||||
10. | On the Diophantine equation 323x + 3232s n y = z 2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) | Chotchaisthit, S. Worawiset, S. |
2015 | ||||
11. | On the Diophantine equation 483x + 4832s ny = z2t, where s,t,n are non-negative integers and n ≡ 5 (mod 20) | Chotchaisthit, S. Worawiset, S. |
2015 | ||||
12. | On the Diophantine equation 4qx +7y = z2m | Chotchaisthit, S. | 2016 | ||||
13. | ON THE DIOPHANTINE EQUATION 4q(x) | Somchit Chotchaisthit | 2016 | ||||
14. | Non-negative integer solutions of some diophantine equations | Somchit Chotchaisthit | 2017 | ||||
15. | The class of all semigroups related to semihypergroups of order 2 | Somnuek Worawiset Jorg Koppitz Somchit Chotchaisthit |
2019 | ||||
Count | 13 | 0 | 4 | 0 |
Title | Authors | NRIIS type | Year | NRIIS Scholarship |
---|