Loading
รศ.ดร. สมจิต โชติชัยสถิตย์

รศ.ดร. สมจิต โชติชัยสถิตย์

ภาควิชาคณิตศาสตร์,
คณะวิทยาศาสตร์,
มหาวิทยาลัยขอนแก่น
55825900600: H-INDEX 3

บทความ

TCI อ้างอิงจาก http://www.tci-thaijo.org/

0

SCOPUS

0

PUBMED

0

ISI

0

TCI

Title Author Year SCOPUS PUBMED ISI TCI
1. On the Diophantine equation 2(x)+11(y) = z(2) Somchit Chotchaisthit 2013
2. On the diophantine equation p x + (p + 1)y = z 2 where p is a mersenne prime Chotchaisthit, S. 2013
3. Simple proofs determining all nonisomorphic semigroups of order 3 with two idempotents Chotchaisthit, S. 2013
4. Common fixed point theorems for a Ćirić-Reich-Rus pair of mappings in metric spaces with a directed graph Boonsri, N.
Chotchaisthit, S.
Saejung, S.
2014
5. On the Diophantine equation (2k −1)x + (2k)y = z2 when k is a positive integer Chotchaisthit, S. 2014
6. On the diophantine equation 3x + 32sny = z2t where n, s, t are non-negative integers and n = 5 (mod 20) Sarasit, N.
Chotchaisthit, S.
2014
7. On the Diophantine equations px + py = z2m where p is prime and m is a non-negative integer Chotchaisthit, S. 2014
8. Simple proofs determining all nonisomorphic semigroups of order 3 Chotchaisthit, S. 2014
9. On the diophantine equation 143x + 1432s ny = z2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015
10. On the Diophantine equation 323x + 3232s n y = z 2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015
11. On the Diophantine equation 483x + 4832s ny = z2t, where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015
12. On the Diophantine equation 4qx +7y = z2m Chotchaisthit, S. 2016
13. ON THE DIOPHANTINE EQUATION 4q(x) Somchit Chotchaisthit 2016
14. Non-negative integer solutions of some diophantine equations Somchit Chotchaisthit 2017
15. The class of all semigroups related to semihypergroups of order 2 Somnuek Worawiset
Jorg Koppitz
Somchit Chotchaisthit
2019
Count 13 0 4 0

Title Authors Year Publication name Cited count
< 2015 2016 2017 2018 2019 2020 รวม
1. On the diophantine equation p x + (p + 1)y = z 2 where p is a mersenne prime Chotchaisthit, S. 2013 International Journal of Pure and Applied Mathematics
2 (88), pp. 169-172
2. Simple proofs determining all nonisomorphic semigroups of order 3 with two idempotents Chotchaisthit, S. 2013 International Journal of Pure and Applied Mathematics
4 (86), pp. 721-726
3. Common fixed point theorems for a Ćirić-Reich-Rus pair of mappings in metric spaces with a directed graph Boonsri, N.
Chotchaisthit, S.
Saejung, S.
2014 International Journal of Pure and Applied Mathematics
1 (94), pp. 45-53
4. On the Diophantine equation (2k −1)x + (2k)y = z2 when k is a positive integer Chotchaisthit, S. 2014 JP Journal of Algebra, Number Theory and Applications
2 (35), pp. 219-225
5. On the diophantine equation 3x + 32sny = z2t where n, s, t are non-negative integers and n = 5 (mod 20) Sarasit, N.
Chotchaisthit, S.
2014 International Journal of Pure and Applied Mathematics
2 (97), pp. 211-218
6. On the Diophantine equations px + py = z2m where p is prime and m is a non-negative integer Chotchaisthit, S. 2014 JP Journal of Algebra, Number Theory and Applications
1 (34), pp. 27-38
7. Simple proofs determining all nonisomorphic semigroups of order 3 Chotchaisthit, S. 2014 Applied Mathematical Sciences
25-28 (), pp. 1261-1269
8. On the diophantine equation 143x + 1432s ny = z2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015 International Journal of Pure and Applied Mathematics
3 (100), pp. 405-412
9. On the Diophantine equation 323x + 3232s n y = z 2t where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015 International Journal of Pure and Applied Mathematics
3 (100), pp. 435-442
10. On the Diophantine equation 483x + 4832s ny = z2t, where s,t,n are non-negative integers and n ≡ 5 (mod 20) Chotchaisthit, S.
Worawiset, S.
2015 International Journal of Pure and Applied Mathematics
4 (100), pp. 461-468
11. On the Diophantine equation 4q<sup>x</sup> +7<sup>y</sup> = z<sup>2m</sup> Chotchaisthit, S. 2016 JP Journal of Algebra, Number Theory and Applications
1 (38), pp. 19-28
12. Non-negative integer solutions of some diophantine equations Chotchaisthit, S. 2017 Chiang Mai Journal of Science
3 (44), pp. 1163-1171
13. The class of all semigroups related to semihypergroups of order 2 Worawiset, S.
Chotchaisthit, S.
2019 Mathematica Slovaca
2 (69), pp. 371-380

Title Authors Year Journal title

Title Authors Year Journal title Cited count
< 2015 2016 2017 2018 2019 2020 รวม
1. On the Diophantine equation 2(x)+11(y) = z(2) Somchit Chotchaisthit 2013 MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY
2.0 (7.0), pp. 291.0-293.0
3 0 0 0 0 0 3
2. ON THE DIOPHANTINE EQUATION 4q(x) Somchit Chotchaisthit 2016 JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS
1.0 (38.0), pp. 19.0-28.0
0 0 0 0 0 0 0
3. Non-Negative Integer Solutions of Some Diophantine Equations Somchit Chotchaisthit 2017 CHIANG MAI JOURNAL OF SCIENCE
3.0 (44.0), pp. 1163.0-1171.0
0 0 0 0 0 0 0
4. THE CLASS OF ALL SEMIGROUPS RELATED TO SEMIHYPERGROUPS OF ORDER 2 Somnuek Worawiset
Jorg Koppitz
Somchit Chotchaisthit
2019 MATHEMATICA SLOVACA
2.0 (69.0), pp. 371.0-380.0
0 0 0 0 0 0 0

Title Authors Year Journal title

ชื่อโครงการ Authors ประเภทโครงการ ปีงบประมาณ ทุนวิจับ

0.014666557312011719